
Example scribed lecture notes

Three authors

1 IFFT from FFT

Last time, we learned about rapidly computing the discrete Fourier transform (DFT),

x̂(k) =

N−1∑
t=0

x(t)e−i2πkt/N , k = 0, 1, . . . , N − 1,

when N was not prime using the fast Fourier transform (FFT) algorithm. The O(N logN) computational complexity
of the FFT and inverse FFT (IFFT) give us a fast way of evaluating the response of a linear, time-invariant (LTI)
system to a signal. This is illustrated in the diagram below, where D stands for a diagonal operator.

x y

x̂ ŷ

FFT

LTI system

D

IFFT

Because the FFT is so important, there has been significant research effort to implement the algorithm in hardware
[2, 6, 13]. However, we need the IFFT to complete the above diagram. Does this mean we need FFT and IFFT
hardware? Of course not. The trick is time reversal:

x(t) =
1

N

N−1∑
k=0

x̂(k)ei2πkt/N

=
1

N

N−1∑
k=0

x̂(N − 1− k)ei2π(N−1−k)t/N

=
e−i2πt/N

N

N−1∑
k=0

x̂(N − 1− k)e−i2πkt/N

The summation in the last line is the FFT of the time-reversed signal x̂(N − 1− k). Thus, the IFFT consists of
three steps: (1) time reverse, (2) FFT, and (3) post-multiply.

2 Zero-padding

An important consideration is the effect of zero padding a signal in time before computing a DFT. Suppose our
signal is of length N , which we will denote xN (t). The zero-padded signal of length 2N , x2N (t), is defined as

x2N (t) =

{
xN (t), t = 0, . . . , N − 1
0, t = N, . . . , 2N − 1

The DFT of x2N (t) is then

x̂2N (k) =

2N−1∑
t=0

x2N (t)e−2πitk/(2N)

=

N−1∑
t=0

x2N (t)e−2πitk/(2N)

1

This is almost the DFT of xN . The difference is the 2N in the exponential and the fact that k ranges from 0 to
2N − 1. We seek a physical interpretation of this DFT. To do this, we view the DFT as a trigonometric polynomial:

x̂N (k) =

N−1∑
t=0

xN (t)e−i2πkt/N → F (w) =

N−1∑
t=0

xN (t)e−itw

The DFT of the signal xN is evaluating the polynomial F (w) at w = 2πk
N , k = 0, . . . , N − 1, the FFT provides a

fast algorithm for this evaluation. We can view this as sampling at the Nyquist rate in the frequency domain, see
Figure 1.

0 2π
N

4π
N

.
π(2N−1)

N
2π

Figure 1: Samples in the frequency domain with no zero-padding (Nyquist rate).

Through this lens, the DFT of x2N (t) is evaluating the same polynomial F (w) at additional points, namely,
w = πk

N , k = 0, . . . , 2N − 1. This is illustrated in Figure 2. We can similarly evaluate the DFT of xdN (t), and we say
that d is the oversampling factor.

0 2π
2N

4π
2N

. .
2π(N−1)

N
2π

Figure 2: Samples in the frequency domain with an oversampling factor of d = 2.

3 Going off the grid

So far, we have assumed that the frequencies w in evaluating F (w) were equispaced and that the sampling times
t for x(t) were equispaced. However, in many applications the evaluation points in frequency and/or time are not
equispaced yet we would still like to be able to evaluate the trigonometric polynomial at all of the desired points in
O(N logN) time.

3.1 Applications

Let us consider the case where the data, y(k), consists of measurements of F (ωk) at unequispaced frequencies ωk
and we want to recover the signal x(t) at equispaced t. By definition these signals satisfy the following relationship:

y(k) =

N−1∑
t=0

x(t)e−iωkt, k = 0, . . . ,M − 1. (1)

One specific problem of this form is magnetic resonance imaging (MRI). The frequency samples y(k) are collected
by the machine and we want to recover the brain image x(t).

Another example is computed axial tomography (CAT) scans. In this case, after suitable preprocessing we are
given frequency samples y(k) that lie on a polar grid in 2D. Note that in this special case there are actually specialized
algorithms for computing this so called polar DFT rapidly, see, e.g. [1], [4] and [10].

Another application is finding numerical solutions to partial differential equations such as heat equation (the
differential equation ut = uxx), see, e.g., [12]. In this case, the problem is solved in the frequency domain at
unequispaced points, as shown in Figure 3.

3.2 Least squares formulation

In matrix form, we can write (1) as y = Ax, where Akt = e−iωkt, k = 0, . . . ,M − 1, t = 0, . . . , N − 1. Typically,
M ≥ N , y ≈ Ax, and one approach is to solve the following least squares problem:

min
x∈Cn

f(x) = ||y −Ax||22

2

Figure 3: Unequispaced frequency samples for computing a numerical solution of the heat equation. Image from [12].

In practice A is too large for a direct method such as QR, so we use an iterative method to solve this optimization
problem. An example iterative method is gradient descent, which requires being able to evaluate the gradient of the
objective function f :

∇f(x) = A∗(Ax− y)

Thus, we are concerned with applying the matrices A and A∗ quickly. Let’s examine how these matrices operate
on a vector via

• (Ax)k =
∑N−1
t=0 x(t)e−itωk (equispaced → unequispaced),

• (A∗x)k =
∑M−1
n=0 x(tn)e2πitnk (unequispaced → equispaced),

where we have switched the role of time and space for the adjoint operator. Thus, A∗A takes an equispaced vector
to an equispaced vector. In the language of Greengard and Lee [11], applying the operator A constitutes a nonuniform
FFT (NUFFT) of Type II and applying the operator A∗ constitutes a NUFFT of Type I. For completeness, we also

have the NUFFT of Type III, which is used to evaluate
∑N−1
n=0 x(tn)e−itωk (unequispaced → unequispaced).

Näıvely, the computational complexity of applying A and A∗ is O(MN). In Section 4, we will examine how to
rapidly apply A and A∗ to a vector. We note that, given the ωk, we have an analytic representation of Akt, namely
e−iωkt. Thus, A and A∗ require only O(N) memory.

4 NUFFTs for Dummies

The original Dutt & Rokhlin approach to the NUFFT in [9] is “brilliant” (Candès), but requires a lot of background
knowledge in signal processing and spectrum analysis. We will review the details in Section 5, but first we look here
at a conceptually straight-forward approach by Candès, Demanet, Donoho, & Ying [5]. We will start with the Type
II NUFFT, as it is simpler.

4.1 Algorithm for Type II NUFFT

Recall that for the Type II NUFFT we wish to evaluate the trigonometric polynomial F (ω) =
∑
x(t) exp(−itω) on

an arbitrary grid in frequency space. In the notation of Section 2, suppose we oversample our N -point signal XN (t)
by a factor of d by appending (d− 1)N trailing zeros to XN (t), i.e.,

XdN (t) =

{
XN (t) : t ∈ {t0, . . . , tN−1},
0 : t ∈ {tN , . . . , tdN−1}.

3

As we saw before, this corresponds to evaluating F (ω) at the regular grid points ω̃k = 2πk
dN for k = 0, . . . , dN − 1.

The key idea for computing the Type II NUFFT will be Taylor approximation. In the first step, on the fine grid
we evaluate the trigonometric polynomial and its derivatives, F (l)(ω) for l = 0, . . . , L−1. In the second step, for each
point ωk in the set of evaluation points we perform a Taylor expansion of order L− 1 around its nearest neighbor in
the fine grid.

4.1.1 Step 1

We wish to determine the values F (l)(ω̃k) for ω̃k in the fine grid and l = 0, . . . , L− 1. For l = 0, we see that this is
just the dN -point DFT of x(t), so we can use the Cooley-Tukey FFT algorithm [7] for regular grids. For l 6= 0, we
are dealing with some derivative of F (w), but from the definition we see that

F (l)(ω) =
∂(l)

∂ω(l)

[∑
x(t) exp(−itω)

]
=
∑

x(t)(−it)l exp(−itω)

≡
∑

xl(t) exp(−itω),

where we observe that the last quantity is just the DFT of xl(t) = (−it)lx(t), which can be computed via pointwise
multiplication (to obtain xl(t)) followed by the Cooley-Tukey algorithm.

Thus, we see that the dominant work in this step is L FFTs, each of length dN , for a cost of O(LdN log(dN)) =
O(LdN logN) (assuming d� N).

4.1.2 Step 2

At the end of Step 1 we have the values of F (ω) and its derivatives on the fine grid. The next step is to perform
a Taylor expansion for each evaluation point. Suppose ωk is a point in the non-uniform grid at which we want to
evaluate F (ω). Then, choosing ω̃k to be the closest fine grid point to ωk, we can Taylor expand around ω̃k to obtain

F (ωk) ≈ F (ω̃k) + F ′(ω̃k)(ωk − ω̃k) + ...+
F (L−1)(ω̃k)(ωk − ω̃k)(L−1)

(L− 1)!

≡ [Pl,ω̃k
f](ωk).

It is evident that, since we have already computed all the necessary function evaluations, this is O(LdN).

4.1.3 Error Analysis

The only approximation made in the above algorithm occurs in the Taylor expansions of Step 2. Luckily, the error
term here is not too difficult to deal with. Using the Lagrange form of the remainder term for the Taylor expansion,
we see that, for any given evaluation point ωk the bound below holds:

|F (ωk)− [Pl,ω̃k
f](ωk)| ≤ ||F (L)||∞

|ωk − ω̃k|L

L!
. (2)

To get a better handle on this bound, we employ the following fact about trigonometric polynomials.

Theorem 1 (Bernstein’s Inequality [15]). Let p(z) be a trigonometric polynomial of degree n with frequencies ranging
from −n/2 to n/2. Then we have that

||p′||∞ ≤
n

2
||p||∞.

By using Theorem 1 L times on (2) we obtain the bound

|F (ωk)− [Pl,ω̃k
f](ωk)| ≤

(
N

2

)L |ωk − ω̃k|L
L!

||F ||∞.

Further, noting that the distance between an evaluation point and its nearest neighbor in the fine grid can never be
greater than π

dN , half the spacing of the fine grid, we obtain the final relative error bound

max
ωk

|F (ωk)− [Pl,ω̃k
f](ωk)| ≤

(π
2d

)L 1

L!
||F ||∞.

For L = 10 and d = 4, the relative error is roughly 2.4 × 10−11, guaranteeing 11 digits of accuracy. For most
applications, noise in the initial data means this level of accuracy is meaningless anyway, so a more reasonable set of
parameters might be L = 4 and d = 8, giving a relative error of about 6.2× 10−5, guaranteeing 5 digits of accuracy.

4

4.2 Example implementation

The MATLAB code below provides an example implementation of the Type II NUFFT algorithm from [5]. Note
that some tests will cause the error bound to appear to fail, but this is because we do not know the true value of
||F ||∞, so we cannot calculate the true relative error, only an approximation.

N = 2^10; L = 4; d = 8;

%Create x, keep track of approximate infinity norm of dN-point FFT of x

t = (0:N-1)’;

td = (0:d*N-1)’;

x = cos(5*pi*t/N) + 2*cos(20*pi*t/N);

approx_norm = 2*d*N;

%zero-pad, then pointwise multiply to get x_l for each l

xL = [x; zeros((d-1)*N,1)];

for l = 1:L-1

xL(:,l+1) = (-i.*td).*xL(:,l);

end

F = fft(xL);

%evaluation points

wk = 2*pi*sort(rand(N,1));

wk_tilde = 2*pi*(0:d*N-1)’/d/N;

%This is not a good way to find the nearest neighbor in practice

dist = @(w) find(abs(w-wk_tilde) == min(abs(w - wk_tilde)));

neighbors_idx = arrayfun(dist,wk);

neighbors = wk_tilde(neighbors_idx);

diffs = wk - neighbors;

%true solution at scattered points

ft = @(w) sum(x.*exp(-i*w*t));

Fwk = arrayfun(ft,wk);

%approximate solution from NUFFT Taylor approximation

l = (0:L-1);

taylor = @(neighbor,diff) sum(F(neighbor,:).*diff.^l./factorial(l));

Fwk_approx = arrayfun(taylor,neighbors_idx,diffs);

err = norm(Fwk - Fwk_approx,’inf’) /approx_norm;

bnd = abs(pi/2/d)^L / factorial(L);

disp(’Maximum error relative to approximate infinity norm of F’);

disp(err);

disp(’Bound on relative error (depends on true infinity norm of F)’);

disp(bnd);

4.3 The adjoint operator: Algorithm for Type I NUFFT

Given that the Type I NUFFT is simply the adjoint of the Type II NUFFT, (i.e., Y (k) =
∑
tn
x(tn) exp(iktn)), it

should be unsurprising that we can use the adjoint operators in each of the above steps to obtain a Type I algorithm.
As a brief diversion, let’s look first at how we can write the Type I algorithm in matrix-vector form. Let x ∈ CN

be the vector of time-domain samples. We introduce the zero-padding operator Z, such that

xd = Zx ≡
[
I
0

]
x,

where the top block is an identity of size N ×N and the bottom block is a block of zeros of size (d− 1)N ×N . Next,
we introduce the operator M ∈ CdNL×dN , which performs pointwise multiplication to obtain a vector of the stacked

5

signals xl(t), i.e.,


x
x1
...

xL−1

 = Mxd ≡


I
D
D2

...
DL−1

xd,

where D ∈ CdN×dN is given by D = diag(−itn).
With W as the DFT matrix, we obtain

F̃

F̃ ′

...

F̃ (L−1)

 =


W 0 . . . 0
0 W . . . 0
...

...
. . .

...
0 0 . . . W




x
x1
...

xL−1

 ,
where each F̃ (l) is a dN -vector of the values of F̃ (l)(ω) on the fine grid. Finally, defining Tl ∈ CdN×dN to be the
matrix that introduces the necessary distance weighting for the Taylor polynomial, i.e.,

(Tl)ij =

{
(ωi−ω̃j)

l

l! ω̃j is the closest fine-grid point to ωi,
0 else,

we obtain

F =
[
T0 T1 . . . TL−1

]


F̃

F̃ ′

...

F̃ (L−1)

 ,
where F is the vector of F (w) evaluated at the scattered points in the frequency domain ωk. Chaining all the
operators together, we can write

F =
[
T0 T1 . . . TL−1

]

W 0 . . . 0
0 W . . . 0
...

...
. . .

...
0 0 . . . W




I
D
D2

...
DL−1


[
I
0

]
x,

and from here it is evident that to perform the Type I transform, the adjoint of the Type II, we can simply take the
adjoint of each of these individual operators, which yields

Y =
[
I 0

] [
I D∗ (D∗)2 . . . (D∗)L−1

]

W ∗ 0 . . . 0
0 W ∗ . . . 0
...

...
. . .

...
0 0 . . . W ∗




T ∗0
T ∗1
...

T ∗L−1

x. (3)

From an algorithmic standpoint, we are done, but let’s try to gain some mathematical insight into what this adjoint
transformation actually is doing as far as approximations go.

4.3.1 Mathematical intuition

Recall that the adjoint transform is

Y (k) =
∑
tn

x(tn) exp(itnk).

6

By Taylor’s Theorem, note that for t sufficiently close to tn, we have that

exp(itnk) = exp(itk) exp(i(tn − t)k) ≈ exp(itk)

[
1 + i(tn − t)k + · · ·+ (i(tn − t)k)L−1

L!

]
.

Let t̃m be the uniform fine-grid points obtained via oversampling. Then, using some careful reordering,

Y (k) ≈
L∑
l=0

(ik)l
∑
t̃m

exp(it̃mk)
∑

tn∈N (t̃m)

(tn − t̃m)l

l!
x(tn),

where we note that it is possible for one t̃m to have multiple tn for which it is the nearest neighbor in the fine grid,
and thus the third sum aggregates these terms. This suggests the following algorithm [5]:

1. Compute the dN -vector xl(t̃m) =
∑
tn∈N (t̃m)

(tn−t̃m)l

l! x(tn) for all m for l = 0, . . . , L− 1.

2. Compute the dN -vector x̂l(k) by taking the IFFT of xl for each l.

3. Compute the dN vector Ỹ (k) =
∑L
l=0 (ik)lx̂l(k).

4. Extract the first N entries of Ỹ (k).

This is exactly the process described in Eqn. (3). The error and cost analysis are the same as in the forward case.

4.4 Type III NUFFTs

Note that there is nothing of major interest to say about the Type III NUFFT (mapping between nonuniform time
and nonuniform frequency) as it is obtained by the same ideas as exposited above: Taylor expand to map to a
uniform grid, use the FFT algorithm, then Taylor expand to map to the new nonuniform grid.

5 Other Non-uniform Fast Fourier Transform algorithms

The preceding section presented a method for computing a DFT on nonuniformly spaced time and frequency samples
via the so-called NUFFT given in [5]. These algorithms are also sometimes referred to as unequally spaced fast Fourier
transform (USFFT) algorithms. However, this is by no means the only method for such a DFT. The late 20th century
saw the advent of a number of different USFFT algorithms. Many of these algorithms are similar to the preceding
algorithm in that they combine interpolation schemes with oversampling. Here we will provide a brief overview of a
few of the key papers and USFFT algorithms. Some references not discussed in detail here that discuss algorithms
for computing a NUFFT include [8], [11] and [14]. The notation of this section follows the original papers and thus
may differ from our earlier discussion.

5.1 Interpolation with Gaussian Bells

Dutt and Rokhlin [9] presented an algorithm to take a set of N complex numbers hk and compute sums of the form

ĥj =

N∑
k=0

hke
ixjwk , j = 0, . . . , N (4)

where wn ∈ [−N/2, N/2] and xl ∈ [−π, π] are not necessarily uniformly spaced points. The paper by Dutt and
Rokhlin actually contains a collection of algorithms for computing sums of this form, and their inverses, in various
circumstances. However, here we are only going to present the ideas behind the algorithms and thus the specifics of
the given problems are omitted. Please see [9] for full descriptions of all the algorithms. The presentation here is also
in line with the presentation of the paper, which speaks in terms of interpolation schemes. However, as discussed in
class there are alternatives to this presentation of the method.

Just as the NUFFT presented in the preceding section uses a combination of interpolation and oversampling, so
does the algorithm presented by Dutt and Rokhlin. In particular, a specialized interpolation scheme using Gaussian
bells is developed and used to move between nonequispaced points and equispaced points. To achieve this, Rokhlin
and Dutt use the fact, Theorem 2.10 in [9], that functions of the form eicx may be approximated on some interval of

7

the real line using a small collection of terms of the form ebx
2

eikx with integer k. The number of terms, q, needed is
independent of c. To illustrate how these representations may be used, consider writing

eicx ≈ ebx
2

[c]+q/2∑
k=[c]−q/2

ρke
ikx, (5)

for some ρk, see, e.g., Corollary 2.9 and Theorem 2.10 in [9]. Notationally, [c] represents the integer closest to c and
the accuracy of such a representation and the interval on which it is valid may be controlled by choosing q and an
oversampling factor denoted m.

These representations allow for the transition between nonequispaced and equispaced grids. Specifically, if the
xj are equispaced and the wk are not then this representation formula converts (4) into a standard DFT of length
mN which may be computed via the FFT. Conversely, if the xj are not equispaced but the wk are a formula of
the form (5) may be used to interpolate the result of an oversampled DFT, once again computed by the FFT, onto
the unequally spaced xj . These steps analogous to those in the Type I and Type II NUFFT algorithms presented
previously.

These observations mean that a NUFFT using this interpolation scheme has two key components, there is an
interpolation step and the computation of an FFT of length mN. In particular in [9] the authors show that the
interpolation step only requires O(Nq) operations to achieve a desired accuracy. Thus, based on the O(mN logN)
run time for the FFT the authors show that the operation count when either the wk are equispaced or the xj are
equispaced is O(mN logN+Nq), in the case where both are not uniformly spaced this grows to O(m2N logN+Nq).
The authors assume that m2 � N, and in fact it is often sufficient to take m as a small integer. Finally, the
authors use the fact that q ∼ log(1/ε) where ε is the desired accuracy to get an operation count in the first case of
O(mN logN +N log(1/ε)).

5.2 Projecting functions onto a subspace

Beylkin in [3] presents an alternative USFFT algorithm to the one previously presented. Furthermore, the paper
presents a different perspective on the structure of the algorithm. Specifically, instead of considering an interpolation
scheme the paper presents a means of projecting a function onto a specific space that allows for the computation of an
unequally spaced DFT via a projection, an oversampled DFT, and a final correction step. A brief overview of some
of the key ideas in the algorithm are given here, for details please see [3]. Beylkin also discusses the multidimensional
case, however, here we will restrict our discussion to the one dimensional case.

Similar to before, let us consider a set of Np complex numbers hk for which we wish to compute sums of the form

ĥj =

NP−1∑
k=0

hke
−2πixkξj , j = 0, 1 . . . , N (6)

where ξj ∈ [−N,N] and xk ∈ [0, 1] are not necessarily uniformly spaced points. To address the problem of rapidly
computing sums of this form Beylkin introduces the generalized function

h(x) =

NP−1∑
k=0

hkδ(x− xk). (7)

Using this the evaluation of (6) may be thought of as computing

ĥ(ξ) =

∫
h(x)e−2πixξdx, (8)

at the set of points ξj , j = 0, 1, . . . , N where |ξj | ≤ N. This converts the problem into one where we wish to accurately
and rapidly compute the Fourier transform of a generalized function in the region |ξ| ≤ N.

The first step of the algorithm for computing the necessary Fourier transforms is to project the generalized
function h(x) onto the jth level of a set of subspaces each spanned by translations and scaling of a scaling function
φ(x), denoted

φk,j(x) = 2−j/2φ(2−jx− k),

see [3] for details. Considering the projections of h(x) onto φk,j yields coefficients

gk =

∫
h(x)φk,j(x)dx.

8

Computation of these coefficients may be interpreted as a blurring of the function, and this interpretation is similar
to the role of the interpolation in the algorithm by Dutt and Rokhlin. The next step of the algorithm is to consider
the Fourier series,

H(x) =
∑
k

gke
−2πiξk. (9)

It is important to note that specifically for the USFFT the compact support of h(x) means that for an appropriate
selection of φ(x) (e.g., compact support) the gk will only be nonzero for a finite range of k, which depends on j
and the support of φ. This Fourier series, after an appropriate multiplicative correction in ξ space is an accurate
approximation for ĥ(ξ) on a fixed interval, see Theorem III.1 in [3]. Under an appropriate selection of φ(x) and an
oversampling factor ν any desired accuracy may be achieved over the region of interest.

Beylkin motivates choosing φ to be the central B-spline of mth order, denoted β(m)(x). Essentially, the compact
support of the splines in the spatial domain coupled with their decay in the Fourier domain motivates the choice.

To outline one version of the algorithm we consider the case where the ξj are equally spaced and the xk are
not. As before, the algorithms for the other cases are similar in structure. To address the case where the ξj are not
equally spaced an interpolation scheme using B-splines is used, see [3] for the details. The compact support in space
coupled with the nature of the function h(x) means that gk may be computed as

gk = 2−j/2
Np−1∑
l=0

hlβ
(m)(2−jxl − k).

Only a finite number of these coefficients will be nonzero and thus the Fourier series

H(ξ) =
∑
k

gke
−2πikξ

may be evaluated at the desired equispaced points via the FFT. Multiplying by a corrective factor in ξ, which may
be computed cheaply yields an approximation for ĥj . The projection onto the B-splines costs mNp operations and
the FFT is used on a νN length signal. Furthermore, since m ∼ log(1/ε) where ε is the desired accuracy the final
computational cost of the algorithm is O(log(1/ε)Np+νN logN). As before, we observe that these USFFT algorithms
all tend to require both an interpolation, or projection, step and the computation of an oversampled DFT via the
FFT, hence the broadly similar computational costs.

6 Additional resources

• A collection of non-uniform FFT software and applications is at http://www.cims.nyu.edu/cmcl/nufft/

nufft.html.

• An image reconstruction toolbox for Matlab that includes NUFFT software is at http://web.eecs.umich.

edu/~fessler/code/index.html

References

[1] A. Averbuch, R. Coifman, D. Donoho, M. Elad, and M. Israeli, Fast and accurate polar Fourier
transform, Applied and Computational Harmonic Analysis, 21 (2006), pp. 145 – 167.

[2] B. M. Baas, A low-power, high-performance, 1024-point FFT processor, Solid-State Circuits, IEEE Journal of,
34 (1999), pp. 380–387.

[3] G. Beylkin, On the Fast Fourier Transform of functions with singularities, Applied and Computational Har-
monic Analysis, 2 (1995), pp. 363 – 381.

[4] G. Beylkin, C. Kurcz, and L. Monzón, Grids and transforms for band-limited functions in a disk, Inverse
Problems, 23 (2007), p. 2059.

[5] E. Candès, L. Demanet, D. Donoho, and L. Ying, Fast discrete curvelet transforms, 2005.

[6] E. Cetin, R. C. Morling, and I. Kale, An integrated 256-point complex FFT processor for real-time spec-
trum analysis and measurement, in Instrumentation and Measurement Technology Conference, 1997. IMTC/97.
Proceedings. Sensing, Processing, Networking., IEEE, vol. 1, IEEE, 1997, pp. 96–101.

9

[7] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex fourier series, Math-
ematics of Computation, 19 (1965), pp. pp. 297–301.

[8] A. Duijndam and M. Schonewille, Nonuniform fast Fourier transform, Geophysics, 64 (1999), pp. 539–551.

[9] A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput., 14 (1993),
pp. 1368–1393.

[10] M. Fenn, S. Kunis, and D. Potts, On the computation of the polar FFT, Applied and Computational
Harmonic Analysis, 22 (2007), pp. 257 – 263.

[11] L. Greengard and J. Lee, Accelerating the Nonuniform Fast Fourier Transform, SIAM Review, 46 (2004),
pp. 443–454.

[12] L. Greengard and P. Lin, Spectral approximation of the free-space heat kernel, Applied and Computational
Harmonic Analysis, 9 (2000), pp. 83–97.

[13] S. He and M. Torkelson, Design and implementation of a 1024-point pipeline FFT processor, in Custom
Integrated Circuits Conference, 1998. Proceedings of the IEEE 1998, IEEE, 1998, pp. 131–134.

[14] D. Potts, G. Steidl, and M. Tasche, Fast Fourier transforms for nonequispaced data: A tutorial, 2000.

[15] A. Zygmund, Trigonometric Series, no. v. 1 in Cambridge Mathematical Library, Cambridge University Press,
2002.

10

