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Generative vs. Conditional vs. ERM 

• Empirical Risk Minimization
– Find ℎ = argmin

ℎ∈𝐻
𝐸𝑟𝑟𝑆(ℎ) s.t. overfitting control

– Pro: directly estimate decision rule
– Con: need to commit to loss, input, and output before training

• Discriminative Conditional Model
– Find P(Y|X), then derive h(x) via Bayes rule
– Pro: not yet committed to loss during training
– Con: need to commit to input and output before training; learning 

conditional distribution is harder than learning decision rule

• Generative Model
– Find P(X,Y), then derive h(x) via Bayes rule
– Pro: not yet committed to loss, input, or output during training; often 

computationally easy
– Con: Needs to model dependencies in X

Bayes Decision Rule

• Assumption: 

– learning task P(X,Y)=P(Y|X) P(X) is known

• Question:

– Given instance x, how should it be classified to 
minimize prediction error?

• Bayes Decision Rule: 

ℎ𝑏𝑎𝑦𝑒𝑠 Ԧ𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌[𝑃 𝑌 = 𝑦 𝑋 = Ԧ𝑥 ]

Example: Modeling Flu Patients

• Data:

• Approach: One model for flu, one for not-flu.

fever
(h,l,n)

cough
(y,n)

pukes
(y,n)

flu?

high yes no 1

high no yes 1

low yes no -1

low yes yes 1

Bayes Theorem

• It is possible to “switch” conditioning 
according to the following rule 

• Given any two random variables X and Y, it 
holds that

• Note that

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃(𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)

𝑃 𝑋 = 𝑥 = ෍

𝑦∈Y

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃(𝑌 = 𝑦)

Naïve Bayes’ Classifier 
(Multivariate)

• Model for each class

• Prior probabilities

• Classification rule: 

fever
(h,l,n)

cough
(y,n)

pukes
(y,n)

flu?

high yes no 1

high no yes 1

low yes no -1

low yes yes 1

high no yes ???

𝑃 𝑋 = Ԧ𝑥 𝑌 = +1 = ෑ

𝑖=1

𝑁

𝑃 𝑋𝑖 = 𝑥𝑖 𝑌 = +1)

𝑃 𝑋 = Ԧ𝑥 𝑌 = −1 = ෑ

𝑖=1

𝑁

𝑃 𝑋𝑖 = 𝑥𝑖 𝑌 = −1)

𝑃 𝑌 = +1 , 𝑃(𝑌 = −1)

ℎ𝑛𝑎𝑖𝑣𝑒 Ԧ𝑥 = argmax
𝑦∈{+1,−1}

𝑃(𝑌 = 𝑦)ෑ

𝑖=1

𝑁

𝑃 𝑋𝑖 = 𝑥𝑖 𝑌 = 𝑦)
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Estimating the Parameters of NB
• Count frequencies in training data

– n: number of training examples
– n+ / n- : number of pos/neg examples
– #(Xi=xi, y): number of times feature 

Xi takes value xi for examples in class y
– |Xi|: number of values attribute Xi

can take

• Estimating P(Y)
– Fraction of positive / negative examples in training data

• Estimating P(X|Y)
– Maximum Likelihood Estimate

– Smoothing with Laplace estimate

fever
(h,l,n)

cough
(y,n)

pukes
(y,n)

flu?

high yes no 1

high no yes 1

low yes no -1

low yes yes 1

high no yes ???

෠𝑃 Y = +1 =
𝑛+
𝑛

෠𝑃 Y = −1 =
𝑛−
𝑛

෠𝑃(𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦) =
#(𝑋𝑖 = 𝑥𝑖, 𝑦)

𝑛𝑦

෠𝑃(𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦) =
#(𝑋𝑖 = 𝑥𝑖, 𝑦) + 1

𝑛𝑦 + |𝑋𝑖|

Linear Discriminant Analysis

• Spherical Gaussian model with unit variance for each class

• Prior probabilities

• Classification rule

𝑃 𝑋 = Ԧ𝑥 𝑌 = +1)~exp −
1

2
Ԧ𝑥 − Ԧ𝜇+

2

𝑃 𝑋 = Ԧ𝑥 𝑌 = −1)~exp −
1

2
Ԧ𝑥 − Ԧ𝜇−

2

𝑃 𝑌 = +1 , 𝑃(𝑌 = −1)

ℎ𝐿𝐷𝐴 Ԧ𝑥 = argmax
𝑦∈{+1,−1}

𝑃 𝑌 = 𝑦 𝑒𝑥𝑝 −
1

2
Ԧ𝑥 − Ԧ𝜇𝑦

2

argmax
𝑦∈{+1,−1}

log(𝑃 𝑌 = 𝑦 ) −
1

2
Ԧ𝑥 − Ԧ𝜇𝑦
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Estimating the Parameters of LDA

• Count frequencies in training data
– Ԧ𝑥1, Ԧ𝑦1 , … , Ԧ𝑥𝑛 , Ԧ𝑦𝑛 ~𝑃 𝑋, 𝑌 : training data
– n: number of training examples
– n+ / n-: number of positive/negative training examples

• Estimating P(Y)
– Fraction of pos / neg examples in training data

• Estimating class means

෠𝑃 Y = +1 =
𝑛+
𝑛

෠𝑃 Y = −1 =
𝑛−
𝑛

Ԧ𝜇+ =
1

𝑛+
෍

𝑖:𝑦𝑖=1

Ԧ𝑥𝑖 Ԧ𝜇− =
1

𝑛−
෍

𝑖:𝑦𝑖=−1

Ԧ𝑥𝑖

Naïve Bayes Classifier 
(Multinomial)

• Application: Text classification (𝑥 = (𝑤1, … , 𝑤𝑙) sequence)

• Assumption

• Classification Rule

𝑃 𝑋 = 𝑥 𝑌 = +1 = ෑ

𝑖=1

𝑙

𝑃 𝑊 = 𝑤𝑖 𝑌 = +1

𝑃 𝑋 = 𝑥 𝑌 = −1 = ෑ

𝑖=1

𝑙

𝑃 𝑊 = 𝑤𝑖 𝑌 = −1

ℎ𝑛𝑎𝑖𝑣𝑒 𝑥 = argmax
𝑦∈{+1,−1}

𝑃(𝑌 = 𝑦)ෑ

𝑖=1

𝑙

𝑃 𝑊 = 𝑤𝑖 𝑌 = 𝑦)

Estimating the Parameters of 
Multinomial Naïve Bayes

• Count frequencies in training data

– n: number of training 
examples

– n+ / n- : number of 
pos/neg examples

– #(W=w, y): number of 
times word w occurs in examples of class y

– l+ / l- : total number of words in pos/neg examples

– | V |: size of vocabulary

• Estimating P(Y)

• Estimating P(X|Y) (smoothing with Laplace estimate):

෠𝑃 Y = +1 =
𝑛+
𝑛

෠𝑃 Y = −1 =
𝑛−
𝑛

෠𝑃(𝑊 = 𝑤|𝑌 = 𝑦) =
#(𝑊 = 𝑤, 𝑦) + 1

𝑙𝑦 + |𝑉|


