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Generative vs. Conditional vs. ERM

* Empirical Risk Minimization
— Find h = argmin Er7g(h) s.t. overfitting control
heH

— Pro: directly estimate decision rule

— Con: need to commit to loss, input, and output before training
* Discriminative Conditional Model

— Find P(Y|X), then derive h(x) via Bayes rule

— Pro: not yet committed to loss during training

— Con: need to commit to input and output before training; learning
conditional distribution is harder than learning decision rule

* Generative Model
— Find P(X,Y), then derive h(x) via Bayes rule

— Pro: not yet committed to loss, input, or output during training; often
computationally easy

— Con: Needs to model dependencies in X

Bayes Decision Rule

* Assumption:
— learning task P(X,Y)=P(Y|X) P(X) is known
* Question:

— Given instance x, how should it be classified to
minimize prediction error?

* Bayes Decision Rule:

hbayes()?) = argmaxyGY[P(Y =ylX = 7?)]

Example: Modeling Flu Patients

R == i v
(y,n)
no 1

high yes

high no yes 1
low yes no -1
low yes yes 1

* Approach: One model for flu, one for not-flu.

Bayes Theorem

* Itis possible to “switch” conditioning
according to the following rule

* Given any two random variables X and Y, it
holds that
PX =x|Y =y)P(Y =y)

PU =yl =) = ===

* Note that

P(X=2)= ) PO =xIY =y)P(Y =)
YEY

Naive Bayes’ Classifier
(Multivariate)

* Model for each class m cough mﬂ
(y,n)
yes no 1

N
P(X =FY =+1) = l_IP(Xi =xlY = +1)

L high
i=1 .
N high no yes 1
p(x:;ﬂy:_1):np(x[:xi|y:_1) low  yes no -1
i=1 low yes yes 1
high no yes 77

* Prior probabilities
P(Y =+1),P(Y = —1)

¢ Classification rule:

N
hnaive (X) = argmax JP(Y =y) [ | P(X; = x|Y = y)
yeE{+1,-1} i=1




.

Estimating the Parameters of NB

L - fever | cough pukes | flu?
Count frequencies in training data (hin) | (yn) (vn)
yes no 1

— n:number of training examples high
— n, /n_: number of pos/neg examples

. high 1
— #(X=x, y): number of times feature 12! ne yes
X; takes value x; for examples in class y low yes no -1
— |X;|: number of values attribute X; low yes yes 1
can take
high no yes 7?7

Estimating P(Y)
— Fraction of positive / negative examples in training data

- n N n_
P(Y=+1)=— PY=-1)=—
n n
Estimating P(X]Y)

— Maximum Likelihood Estimate

N #X; = x;,
P(X;=x|Y =) =M

Y
#Xi=x,y)+1
ny + |X;|

— Smoothing with Laplace estimate
PXi=x|Y =y) =

Linear Discriminant Analysis

* Spherical Gaussian model with unitlvariance for each class
P(X =X|Y = +1)~exp —E(f —iiy)?

P(X =X|Y = —1)~exp —%(f —i_)?
* Prior probabilities
P(Y =+1),P(Y = 1)

* Classification rule L
hypa(X¥) = argmax {P(Y =y)exp (—E(f - ﬁy)2>}

ye{+1,-1}

1, .2
argmax {lug(P(Y =y))— E(x - uy) }
ye(+1,-1)

Estimating the Parameters of LDA

* Count frequencies in training data

— (X1, ¥1), o (B, J) ~P(X, Y): training data

— n: number of training examples

— n, /n: number of positive/negative training examples
* Estimating P(Y)

— Fraction of pos / neg examples in training data

B(Y = +1) = ™ Py = -1)="=
P(Y=+1) = - PY=-1) -
* Estimating class means
| ) L1 ,
H+_Z. Xi M'_Z_Z Xi
{izyi=1} {iyi=-1}

Naive Bayes Classifier
(Multinomial)

* Application: Text classification (x = (wy, ..., w;) sequence)

¢ Assumption .
POC=xlY = +1) = [ [P0V = wily = +1)

i=1

]
PO =Y = =1 = [ [PW = wily = -1)
i=1

 Classification Rule |

hnaive () = argmax 1Y =) [ [POW = wily = 3)
YE{+1,-1} i=1

Estimating the Parameters of
Multinomial Naive Bayes

« Count frequencies in training data
— n: number of training
examples
— n,/n_:number of
pos/neg examples 4: = (Introduction, lo,
— #(W=w, y): number of
times word w occurs in examples of class y
— 1,/1.: total number of words in pos/neg examples
— | V |: size of vocabulary
Estimating P(Y)
n

130(=+1)=7+

(Introducti

(Introduction,

.

PY=-1)="=

Estimating P(X|Y) (smoothing with Laplace estimate):
#W=w,y) +1

PW =wly =y)= TR
y




